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A NOTE ON THE SOLUTION FOR TWO
ASYMMETRIC BOUNDARY VALUE PROBLEMS

LEON M. KEER

Northwestern University, Evanston, Illinois

Abstract-The solution is given for two mixed-mixed boundary value problems in classical elasticity theory.
The first is a rigid disk, imbedded in an infinite space and given a constant displacement parallel to its plane.
The second is a problem exterior to the first: two half-spaces are joined to an infinitesimally thin, rigid sheet
containing a circular hole, the half-spaces being joined through the hole. The sheet is caused to move.

1. INTRODUCTION

CERTAIN boundary value problems in classical elasticity theory have been written in
terms of harmonic functions and their solution obtained by means of potential theory,
Solutions are given in Green and Zerna [1] for boundary value problems of a half-space
with no tangential shearing forces, The two problems considered there were of axial
symmetry: a rigid punch indenting a half-space and the penny-shaped crack. Other
axially symmetric problems were considered by Collins [2] and Goodman [3] in which
a radial shear only is applied. Mindlin [4] solves the asymmetric problem of tangential
contact between two identical spheres through the use of potential functions that eliminate
stresses normal to the half-space and shear stresses tangential to one of the coordinate
axes in the plane of the half-space.

It is the purpose of this note to consider two solutions for the case of zero displace
ment normal to the plane of the half-space. The following two additional restrictions are
to be separately considered, The first is zero tangential shear and the second is zero
displacement, each in the direction of one of the coordinate axes.

For the work that follows a Cartesian coordinate system (x, y, z) will be used. The
displacements corresponding to these coordinates are given by (ux ' uy, uz ) and the stresses
are given by (O"zx' O"zY' O"zz), where the stresses are computed on an element whose normal
is parallel to the z-axis. In addition it will prove convenient to use a cylindrical coordinate
system (r, e, z) whose center and z-axis coincide with the center and z-axis of the Cartesian
system of coordinates. We choose the following displacement solutions to the field
equations of elasticity:*

2J1ux = -(3 -4v) oyjoz + x o2yjoxoz +ZoljJzjox +8<I>jox,

2J1uy = x o2yjoyoz + z 8ljJzjoy + o<I>joy,

2J1uz = - (3 - 4v) ljJz +X o2yjoz2 +z oljJz!oz +8<I>joz,

• See, for example, Green and Zerna [I], pp. 169-170.
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where V2
}, = V 2ljJz = V2<l> = 0. Substitution of equations (1)-(3) into the stress-displace

ment relations for isotropic, elastic solids under isothermal conditions gives the following
values for the stresses:

0"zz = - 2(1- v) oljJzj8z - 2v 82yj8x8z + x 83 yj8z 3 + Z 821jJzjoz2 + cP<l>joz2, (4)

O"zx = -(1- 2v)(8IjJzjox+ 82yjoZ2)+ 82<l>jox8z + z o2ljJzj8xoz + X83y/8x8z2, (5)

O"Z\ = - (1- 2v) oljJzj8y +82<l>joyoz+ z 82ljJzjoyoz + x 83 yj8yoZ2. (6)

The solutions to follow will consider special cases of the above equations for stresses and
displacements.

2. DISPLACEMENT OF RIGID DISK

We consider in this Section the problem of a rigid disk imbedded in an infinite,
elastic solid with the plane of the disk coinciding with the (x, y)-plane of the coordinate

FIG. l(a).

system given above (Fig. 1(a)). The center and axis of the disk coincide with the center
and z-axis of the coordinate system. Boundary conditions for this problem are the
following:

Uz = ur = 0, z = 0, (0 ::s;; r ::s;; a), (7)

Ux =~, z = 0, (0 ::s;; r ::s;; a), (8)

Uz = 0"zx = 0"zy = 0, z = 0, (a < r < 00), (9)

To satisfy these conditions we consider the particular case of (1)-(6) when Uz = O"zy = 0
on the plane z = 0. To satisfy these conditions it is sufficient that the following two
potentials be equal to zero:

IjJz = 0,

o<l>jcz+x a2yjoz2_ z i)2 yjeXGZ = 0.

We now take the potential in the form given by Green and Zerna*

8yj8z = t f(I f(t)R - 1 dt, f(t) = f( - t),
.; -a

where R = [r2+(z+it)2]±.
We nC'te the following results for R as z -+ 0:

lim [r2+(z+it)2]± = lim [r2+(z-itf]± = (r 2_t2)± (t < r),
z-o z-o

lim [r2+(z+it)2]± = -lim [r2+(z-it)2]! = i(t2_r2)± (r < t),
z-o z-o

* Loc. cit. pp. 173-174.
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and the values for oy/oz and 02Y/OZ2 as z -+ 0:

oy/oz = lim !fa fU)R - 1 dt
Z-l>O _Q
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(0 :s; r :s; a)

(a<r<oo),

(0 :s; r :s; a).

(14)

(15)

Using the definitions as given in equations (11), (12) and (15) we obtain the following
result for cC!>/cz:

(0 :s; r :s; a)

oC!> _ cos e d fa '/'() -1 d----- t.J tR t.
CZ 2i dr

-a

We find that C!> and oC!>/oz have the following value on z = 0:

cos efrC!>= --- t 2f(t)(r 2 -t2 )-tdt
r 0

(a < r < (0),

(16)

(17)

d JaoC!>/oz = - cos edr r tf(t)(t 2
- r2

)- t dt

=0

(0 :s; r :s; a)

(a < r < (0).
(18)

Using the preceding results, we can put the stresses and displacements in terms of the
one unknown function,f(t) as follows:
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I 0 fa 0 I d J,a
(J zz = (1- 2v)- - f(t)R - I dt +~- -- (z + it)f(t)R - I dt,

2 ox 2 ox r dr
~a -a

1 d fa Z 02 fa
(Jzx= -(l-v)---- (z+it)f(t)R-1dt+--- j(t)R-1dt.

r dr 2 ox2
-a -a

(20)

On z = 0 (0 <:::; r <:::; 0) the results become the following:

(Jzy = 0,

I d fa
(Jzx = -2(1-v)-r dr r if(t)(t 2 -r2 )-+dt,

(Jzz = (1- 2v) cos e~;f~ f(t)(r 2
- t 2 )-+ dt.

(21)

(22)

For r > 0 the two shear stresses vanish on z = O. If the function,f(t), is taken to be con
stant, then it is seen the boundary conditions of the problem are satisfied In particular
if f(t) = - 8p!1/n(7 - 8p) then the stresses and displacements computed on z = 0 are

4 . 1(0) 4p!1 2 2 2 l=-p!1sm- - + . or- (r -0 )2cos20
n r n(7-8v)

(0 < r < Xl),

(0 <:::; r::;; a)

(a < r < Xl),

(23)

(Jzx = 16(1- v) A( 2 2)-!
~---:c-pu a - r
n(7 - 8v)

(0::;; r::;; a),

(0 ::;; r ::;; 0) (24)_

8(1-2v)(l-v) A O 2 2-l
= pu-(r -a) 2

n(7-8v) r
(a < r < (0),
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3. DISPLACEMENT OF RIGID SHEET

26\

In this Section the analogous problem of a rigid sheet imbedded in an infinite elastic
solid is considered. The sheet has a circular hole in its center whose axis coincides with
the z-axis while the plane of the sheet coincides with the (x, y)-axis (Fig. l(b». The sheet

~~-----x
t a

z

FIG. l(b).

is subsequently given a constant displacement parallel to the x-axis causing shear stresses
(J zx = ± (J0 as z ---> ± 00. Boundary conditions that are equivalent to the above are:

{
(Jzy = 0

z=o (0 :s; r :s; a), (25)

(Jzx = (J 0

Ux = uy = 0 z=o (a < r < 00), (26)

Uz = 0 z = O. (27)

To solve this problem we consider the case where displacements uy and Uz vanish on
z = O. From equations (2) and (3) we see that these conditions can be satisfied if the follow
ing potential functions are set equal to zero:

V1 = - (3 - 4v)ljJz +X 02Y/OZ 2- Z 02y/OX OZ + o<D/oz,

V2 = x oy/oz-z oy/ox +<D.

From (28) and (29) <D and ljJz may be written in terms of y as follows:

<D = z oy/ox - x oy/oz,

. (3 - 4v)ljJ z = oy/ox.

(28)

(29)

(30)

(31)

Using equations (30) and (31) we obtain the representation of displacement and stresses
in terms of y below:

4(1- v)
2IJ.ux = -4(I-v)oy/oz+--zo2y/ox2,

(3 -4v)

4(I-v) 2

2IJ.Uy = (3 _ 4v) z 0 y/oxoy,

4(I-v) 2

2/lu z = (3 _ 4v) z 0 y/ox OZ,

(32)
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4(1- v) 2 02 y 4(1 - v) 03 y
(Jzz = (3_4v)(1- v) ax oz+(3-4v{oxoz2'

2(1- v) 02 y 4(1 - v) 03 y
(J = ----+-- z--:----:--:-

zy (3-4v) oxoy (3-4v) oxoyoz'

2(1- v) 02 y 02 y 4(1- v) 03 y
(Jzx =c. (3-4v) ox2 -2(1-v) OZ2 +(3-4v)z ox2 oz'

(33)

On z = 0 the displacements and stresses become

( 2J1Ux = - 4(1- v) oy/oz,

(34)

(35)

= 4(1- v)(l- 2v) 02 /0 oz
(Jzz (3-4v) Y x ,

2(1- v) 2

(Jzy = (3-4v) a y/ox oy,

2(1- v)
(Jzx = (3_4v)02Y/OX2_2(1-v)02Y/OZ2,

and the problem is reduced to finding a function y that satisfies the boundary conditions.
We take the function oy/oz to be that given by Collins [2] for penny-shaped cracks under
axially symmetric tension perpendicular to the axis of the crack. This function is

g(t) = -g(-t). (36)

(37)

Using the results of (13), we obtain the following values of the function itself and certain
derivatives on z = 0 (0 ~ r ~ a)

oy/oz = -rg(t)(t2- r2)--1 dt,

(38)

(39)

From the form of these functions it can be seen that the boundary conditions for the
problem given by equations (25) and (26) can be satisfied on the surface z = 0 if the follow
ing value is given for f(t) :

2 (3-4v)(Jo
f(t) = - ~ (1- v)(7 - 8v/' (40)



A note on the solution for two asymmetric boundary value problems

The resulting values for the displacements and stresses on z = 0 are given below:
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{

UY=UZ;(~~4V)( 2 2)t
2jJ.u = ----- a -r

x 7t (7 -8v)

=0

(J = _~ (1-2v) (Jor(a2-r2)t
zz 7t (7 -8v)

=0

(Jzy = 0

= ~ ~[a(r2 - aZ)-t - ar- 2(rZ- azyt] sin 2()
7t (7 - 8v)

4. CONCLUSIONS

(0 ~ r ~ a) (41)

(a < r < (0),

(0 ~ r ~ a)

(a < r < (0),

(0 ~ r ~ a)

(42)

(a < r < (0),

(0 ~ r ~ a)

(a < r < (0).

We observe the following features of the solutions given here. An interesting result is
that the first problem can be solved by assuming that the shear stresses perpendicular
to the motion of the disk vanish everywhere on z = 0, and that on the disk itself shear
stresses act only in the direction of the movement. As is expected, stress singularities in
the shear stress occur at all points on the edge of the disk, r = a- ; stress singularities in
the normal stress occur exterior to the disk, r = a+. For the second problem the only
tangential displacement present is in the direction of the only tangential stress interior
to r = a on z = O. Singularities in the normal stress occur at points where r = a- and
singularities in the shear stresses occur when r = a +.

Westmann [5] obtains essentially similar results for interior and exterior crack
problems. For two half-spaces joined by a circular disk and given constant displacement
at z = 00 he shows that the stresses perpendicular to the direction of the displacement
vanish on the contact surface. He shows for a penny-shaped crack under uniform shear
that all displacements perpendicular to the direction of the applied shear stress vanish
in the plane of the crack.
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(Received 4 August 1964)

Zusammenfassung-Fur zwei gemischte Gemischtgrenzwertprobleme der klassischen ElastiziHHstheorie werden
die Losungen angegeben. Das erste Problem befasst sich mit einer in einen grenzenlosen Raum eingebetteten.
steifen Scheibe. welche in einer parallel zu ihrer Ebene liegenden Richtung verschoben wird. Das zweite Problem
begt ausserhalb des ersten Problemes: Zwei Halbraume liegen einer unendlich dunnen, steifen Flache an.
Diese enthalt ein rundes Loch, durch welches die Halbraume miteinander in Verbindung stehen. Die Flache
wird in Bewegung gesetzt.

A6cTpaKT-J!:aHo peweHHe AJIli AByX np06JIeM, co CMewaHHbIM rpaHH'IHbIM 3Ha'leHHeM, B KJIaCCH'leCKOH

TeopHH ynpyroCTH. nepBali np06JIeMa: lKeCTKHH AHCK. norpYlKeHHbIH B 6ecKOHe'lHOe npocTpaHcTBo,

HMeeT nOCTOllHHoe CMell.\eHHe. napaJIJIeJIbHOe ero nJIOCKOCTH. BTopall np06JICMa lIBJIlIeTClI BHCWHeH no

OTHoweHHIO K nepBOH: ABa nOJIynpocTpaHcTBa npHcOCAHHeHbI K 6eCKOHe'lHO TOHKOMy lKeCTKoMy JIHCTy,

HMeIOll.\eMY Kpyrrroe OTBCpCTHC, '1Cpe3 KOTopoe 3TH ABa nOJIynpoCTpaHCTBa COCAHHeHbI. J1HCT nOABCprHyT

nepeMCll.\eHHIO .


